July 28, 2011

The Walk Again Project

Over the past decade, neuroscientists at the Duke University Center for Neuroengineering (DUCN) have developed the field of brain-machine interface (BMI) into one of the most exciting—and promising—areas of basic and applied research in modern neuroscience. By creating a way to link living brain tissue to a variety of artificial tools, BMIs have made it possible for non-human primates to use the electrical activity produced by hundreds of neurons, located in multiple regions of their brains, to directly control the movements of a variety of robotic devices, including prosthetic arms and legs.

As a result, BMI research raises the hope that in the not-too-distant future, patients suffering from a variety of neurological disorders that lead to devastating levels of paralysis may be able to recover their mobility by harnessing their own brain impulses to directly control sophisticated neuroprostheses.
The Walk Again Project, an international consortium of leading research centers around the world represents a new paradigm for scientific collaboration among the world’s academic institutions, bringing together a global network of scientific and technological experts, distributed among all the continents, to achieve a key humanitarian goal.

The project’s central goal is to develop and implement the first BMI capable of restoring full mobility to patients suffering from a severe degree of paralysis. This lofty goal will be achieved by building a neuroprosthetic device that uses a BMI as its core, allowing the patients to capture and use their own voluntary brain activity to control the movements of a full-body prosthetic device. This “wearable robot,” also known as an “exoskeleton,” will be designed to sustain and carry the patient’s body according to his or her mental will.

In addition to proposing to develop new technologies that aim at improving the quality of life of millions of people worldwide, the Walk Again Project also innovates by creating a complete new paradigm for global scientific collaboration among leading academic institutions worldwide. According to this model, a worldwide network of leading scientific and technological experts, distributed among all the continents, come together to participate in a major, non-profit effort to make a fellow human being walk again, based on their collective expertise. These world renowned scholars will contribute key intellectual assets as well as provide a base for continued fundraising capitalization of the project, setting clear goals to establish fundamental advances toward restoring full mobility for patients in need.

Walk again Project Homepage

July 27, 2011

Comprehensive list of BCI Labs Worldwide

You can find a comprehensive listing of companies and labs doing research for Brain-Computer Interefaces at Now Possible. It is great for researchers, executives and other professionals to join their BCI group on LinkedIn.

You can find it at Now Possible

July 25, 2011

Scientists differentiate brain activity associated with grasping

Quickly grabbing a cup of coffee is an everyday action for most of us. For people with severe paralysis however, this task is unfeasible - yet not "unthinkable". Because of this, interfaces between the brain and a computer can in principle detect these "thoughts" and transform them into steering commands. Scientists from Freiburg now have found a way to distinguish between different types of grasping on the basis of the accompanying brain activity.

In the current issue of the journal "NeuroImage", Tobias Pistohl and colleagues from the Bernstein Center Freiburg and the University Medical Centre describe how they succeeded in differentiating the brain activity associated with a precise grip and a grip of the whole hand. Ultimately, the scientists aim to develop a neuroprosthesis: a device that receives commands directly from the brain, and which can be used by paralysed people to control the arm of a robot - or even their own limbs.

One big problem about arm movements had been so far unresolved. In our daily lives, it is important to handle different objects in different ways, for example a feather and a brick. The researchers from Freiburg now found aspects in the brain's activity that distinguish a precise grip from one with the whole hand.

To this end, Pistohl and his collaborators made use of signals that are measured on the surface of the brain. The big advantage of this approach is that no electrodes have to be implanted directly into this delicate organ. At the same time, the obtained signals are much more precise than those that can be measured on the skull's surface.

The scientists conducted a simple experiment with patients that were not paralysed, but had electrodes implanted into their skull for medical reasons. The task was to grab a cup, either with a precise grip formed by the thumb and the index finger, or with their whole hand. At the same time, a computer recorded the electrical changes at the electrodes. And in fact, the scientists were able to find signals in the brain's activity that differed, depending on the type of grasp. A computer was able to attribute these signals to the different hand positions with great reliability. Now, the next challenge will be to identify these kinds of signals in paralysed patients as well - with the aim of eventually putting a more independent life back within their reach.

Source Bernstein Center Freiburg

July 18, 2011

Soft memory device opens door to new biocompatible electronics

Jello Memory
A memory device with the physical properties of Jell-O that functions well in wet environments (credit: Michael Dickey, North Carolina State University)


North Carolina State University researchers have developed a soft memory device design that functions well in wet environments and has memristor-like characteristics, opening the door to new types of smart biocompatible electronic devices.
A memristor (“memory resistor”) is an electronic device that changes its resistive state depending on the current or voltage history through the device.
The ability to function in wet environments and the biocompatibility of the gels mean that this technology holds promise for interfacing electronics with biological systems and medical monitoring,  such as cells, enzymes or tissue.
Jello Memory2
(Credit: Michael Dickey, North Carolina State University)
The device is made using a liquid alloy of gallium and indium metals set into water-based gels. When the alloy electrode is exposed to a positive charge, it creates an oxidized skin that makes it resistive to electricity (a “0″ state).
When the electrode is exposed to a negative charge, the oxidized skin disappears, and it becomes conductive to electricity (a “1″ state).
Ref.: Orlin D. Velev, et al., Towards All-Soft Matter Circuits: Prototypes of Quasi-Liquid Devices with Memristor Characteristics, Advanced Materials, 2011; [DOI: 10.1002/adma.201101257]






Original Article by the Editor of Kurzweilai.net

July 16, 2011

Smartphones Measure Brain Waves

A new mobile phone app and accessory will let users measure their brain waves and gain insight into their own health and well-being, as medical apps continue to bring care directly to the patient.

http://www.facebook.com/pages/Brain-Machine-Interfacing/185448968175960?sk=wall

July 12, 2011

Grow a new eye

“I am attempting to recreate my eye with the help of a miniature camera implant in my prosthetic artificial eye. The intraocular installation of an eye-cam will substitute for the field of vision of my left eye that I lost in 2005 from a car accident.”
So says Tanya Marie Vlach, who lost her left eye in a car accident. After she received “hundreds of international engineering proposals, support from my  one-eyed community, and thousands of media inquiries.I’ve been plotting new strategies to tell my story, both my personal one and the one of my sci-fi alter ego, into a transmedia platform, which will include: a graphic novel, an experimental documentary, a web series, a game, and a live performance.”
And she wants to build a “bionic camera eye” as a Kickstarter project,  described here. (Also see Grow a new eye by Tanya Vlach.)
Specifications:
  • SD at least, 720p HD at best
  • MPEG-4 / H.264 Recording
  • Built in Wireless Transmitter
  • Bluetooth Wireless Method
  • Remote Trigger
  • Mini A/V out
  • Firewire / USB / Mini HDMI
  • Optical 3X
  • Inductors: (Power Source)
Wish List:
  • Wireless
  • Sensors that respond to blinking enabling camera to take still photos, zoom, focus, and turn on and off.
  • Dilating pupil with change of light.
  • Infrared / Ultraviolet
  • Geo-tagging
  • Facial Recognition
  • Water Tight
  • Verisimilitude
Sounds like a great project. Thanks to Ehren Wells for the tip!


Grow a new eye from Tanya Vlach on Vimeo.


Original article  by July 11, 2011 by Amara D. Angelica