Showing posts with label Effects of Biotech on society. Show all posts
Showing posts with label Effects of Biotech on society. Show all posts

August 3, 2011

Trends that’ll change the world in 10 years

Sensor networks, 3D printers, virtual humans and other technologies under development will drastically change our world in the decade to come, according to Cisco chief futurist and chief technologist Dave Evans
Virtual species

Virtual humans, both physical (robots) and online avatars will be added to the workforce. By 2020, robots will be physically superior to humans. IBM’s Blue Brain project, for instance, is a 10-year mission to create a human brain using hardware and software.

“They believe that within a decade they’ll start to see consciousness emerge with this brain,” Evans says. By 2025, the robot population will surpass the number of humans in the developed world. By 2032, robots will be mentally superior to humans. And by 2035, robots could completely replace humans in the workforce. Beyond that is the creation of sophisticated avatars.

Evans points to IBM’s Watson as a template for the virtual human. Watson was able to answer a question by returning a single, accurate result. A patient may use a virtual machine instead of a WebMD search. Or hospitals can augment patient care with virtual machines. Augmented reality and gesture-based computing will enter our classrooms, medical facilities and communications, and transform them as well.

The Internet Of Things

We have passed the threshold where more things than people are connected to the Net. The transition to IPv6 supports limitless connectivity. By 2020, there will be more than six Net-linked devices for every person on Earth. Currently, most of us are connected to Net full-time through three or more devices like PC, phones, TV etc. Next up are sensor networks, using low-power sensors that “collect, transmit, analyze and distribute data on a massive scale,” says Evans.

An ‘Internet of things’ means that everything from electronic dust motes to “connected shoes” to household appliances can be connected to a network and assigned an IP address. Sensors are being embedded in shoes, asthma inhalers, and surgery devices. There’s even a tree in Sweden wired with sensors that tweets its mood and thoughts, with a bit of translation help from an interpretive engine developed by Ericsson (@connectedtree or #ectree).

Quantum networking

Connectivity will continue to evolve, Evans predicts, and networks of tomorrow will be orders of magnitude faster than they are today. The network connectivity 10 years from now will see improvement by 30 lakh times.

Multi-terabit networks using lasers are being explored. And early work is happening on a concept called “quantum networking” based on quantum physics. This involves “quantum entanglement” in which two particles are entangled after which they can be separated by any distance, and when one is changed, the other also changes instantly. Production, though, is not imminent.

Zettabyte Era

By 2015, one zettabyte of data will flow over the Internet. One zettabyte equals stack of books from Earth to Pluto 20 times. “This is the same as every person on Earth tweeting for 100 years, or 125 million years of your favourite one-hour TV show,” says Evans. Our love of high-definition video accounts for much of the increase. By Cisco’s count, 91% of Internet data in 2015 will be video.

And what’s more, he said, the data itself is becoming richer, with every surface — from tables to signs — becoming a digital display, and images evolving from megapixel, to gigapixel, to terapixel definition. So, the so-called “zettaflood” will require vastly improved networks to move more data, and not drop the ball (or the packets) of our beloved video.

Adaptive technology

Technology is finally adapting to us. Evans cites image recognition, puzzle resolution, augmented reality and gesture-based computing as key examples of such technologies.

A technology called 3D printing will allow us to instantly manufacture any physical item, from food to bicycles, using printer technology. Through 3D printing, people in the future will download things as easily as they download music.

“3D printing is the process of joining materials to make objects from 3D model data, usually layer upon layer,” says Evans, adding: “It is not far that we will be able to print human organs.” In March, Dr Anthony Atala from Wake Forest Institute for Regenerative Medicine printed a proof-of-concept kidney mold onstage at TED. It was not living tissue, but the point was well-made.

A better you

“We think nothing of using pacemakers,” Evans points out. In the next 10 years, medical technologies will grow vastly more sophisticated as computing power becomes available in smaller forms. Devices like nanobots and the ability to grow replacement organs from our own tissues will be the norm. “The ultimate integration may be brain-machine interfaces that eventually allow people with spinal cord injuries to live normal lives,” he says.

Today we have mind-controlled video games and wheelchairs, software by Intel that can scan the brain and tell what you are thinking and tools that can actually predict what you are going to do before you do it.

Cloud computing

By 2020, one-third of all data will live in or pass through the cloud. IT spending on innovation and cloud computing could top $1 trillion by 2014.

Right now, the voice search on an Android phone sends the query to Google cloud to decipher and return results. “We’ll see more intelligence built into communication. Things like contextual and location-based information.”

With an always-connected device, the network can be more granular with presence information, tapping into a personal sensor to know that a person’s asleep, and route an incoming call to voicemail. Or knowing that person is traveling at 60 mph in a car, and that this is not the time for a video call.

Power of Power

How are all networked devices going to be powered, and who or what is going to power them? The answer, says Evans, lies in small things. Solar arrays will become increasingly important.

Technologies to make this more economically pragmatic are on their way. Sandia produces solar cells with 100 times less material/same efficiency. MIT technology allows windows to generate power without blocking view.

Inkjet printer produces solar cells with 90 per cent decrease in waste at significantly lower costs. Anything that generates or needs energy, Evans says, will be connected to or managed by an intelligent network.

World Is Flat

The ability of people to connect with each other all around the world, within seconds, via social media isn’t just a social phenomenon, Evans says it’s a flattening out of who has access to technology. He cited the example of Wael Ghonim, the Middle East-based Google engineer whose Facebook page, “We are all Khaled Saeed,” was a spark in the Egyptian uprising and one of the key events of the Arab Spring.

A smaller world also means faster information dissemination. The capture, dissemination and consumption of events are going from “near time” to “real time.” This in turn will drive more rapid influence among cultures.

Self-designed evolution

March 2010: Retina implant restores vision to blind patients.

April 2010: Trial of artificial pancreas starts

June 2011: Spinning heart (no pulse, no clogs and no breakdowns) developed.

Stephen Hawking says, “Humans are entering a stage of self-designed evolution.”

Taking the medical technology idea to the next level, healthy humans will be given the tools to augment themselves. While the early use of these technologies will be to repair unhealthy tissue or fix the consequences of brain injury, eventually designer enhancements will be available to all.

Ultimately, humans will use so much technology to mend, improve or enhance our bodies, that we will become Cyborgs. Futurist Ray Kurzweil is pioneering this idea with a concept he calls singularity, the point at which man and machine merge and become a new species. (Kurzweil says this will happen by 2054).


—Compiled by Beena Kuruvilla

July 25, 2011

Scientists differentiate brain activity associated with grasping

Quickly grabbing a cup of coffee is an everyday action for most of us. For people with severe paralysis however, this task is unfeasible - yet not "unthinkable". Because of this, interfaces between the brain and a computer can in principle detect these "thoughts" and transform them into steering commands. Scientists from Freiburg now have found a way to distinguish between different types of grasping on the basis of the accompanying brain activity.

In the current issue of the journal "NeuroImage", Tobias Pistohl and colleagues from the Bernstein Center Freiburg and the University Medical Centre describe how they succeeded in differentiating the brain activity associated with a precise grip and a grip of the whole hand. Ultimately, the scientists aim to develop a neuroprosthesis: a device that receives commands directly from the brain, and which can be used by paralysed people to control the arm of a robot - or even their own limbs.

One big problem about arm movements had been so far unresolved. In our daily lives, it is important to handle different objects in different ways, for example a feather and a brick. The researchers from Freiburg now found aspects in the brain's activity that distinguish a precise grip from one with the whole hand.

To this end, Pistohl and his collaborators made use of signals that are measured on the surface of the brain. The big advantage of this approach is that no electrodes have to be implanted directly into this delicate organ. At the same time, the obtained signals are much more precise than those that can be measured on the skull's surface.

The scientists conducted a simple experiment with patients that were not paralysed, but had electrodes implanted into their skull for medical reasons. The task was to grab a cup, either with a precise grip formed by the thumb and the index finger, or with their whole hand. At the same time, a computer recorded the electrical changes at the electrodes. And in fact, the scientists were able to find signals in the brain's activity that differed, depending on the type of grasp. A computer was able to attribute these signals to the different hand positions with great reliability. Now, the next challenge will be to identify these kinds of signals in paralysed patients as well - with the aim of eventually putting a more independent life back within their reach.

Source Bernstein Center Freiburg

May 22, 2011

Bionic hand for 'elective amputation' patient

An Austrian man has voluntarily had his hand amputated so he can be fitted with a bionic limb.

The patient, called "Milo", aged 26, lost the use of his right hand in a motorcycle accident a decade ago.
After his stump heals in several weeks' time, he will be fitted with a bionic hand which will be controlled by nerve signals in his own arm.

The surgery is the second such elective amputation to be performed by Viennese surgeon Professor Oskar Aszmann.

The patient, a Serbian national who has lived in Austria since childhood, suffered injuries to a leg and shoulder when he skidded off his motorcycle and smashed into a lamppost in 2001 while on holiday in Serbia.
Milo and his hybrid hand Milo used a hybrid hand before deciding on the operation
While the leg healed, what is called a "brachial plexus" injury to his right shoulder left his right arm paralysed. Nerve tissue transplanted from his leg by Professor Aszmann restored movement to his arm but not to his hand.

A further operation involving the transplantation of muscle and nerve tissue into his forearm also failed to restore movement to the hand, but it did at least boost the electric signals being delivered from his brain to his forearm, signals that could be used to drive a bionic hand.

Then three years ago, Milo was asked whether he wanted to consider elective amputation.
"The operation will change my life. I live 10 years with this hand and it cannot be (made) better. The only way is to cut this down and I get a new arm," Milo told BBC News prior to his surgery at Vienna's General Hospital.

Read the rest of the original here article at BBC news 

October 3, 2009

A Startup That Builds Biological Parts

Ginkgo BioWorks aims to push synthetic biology to the factory level.

In a warehouse building in Boston, wedged between a cruise-ship drydock and Au Bon Pain's corporate headquarters, sits Ginkgo BioWorks, a new synthetic-biology startup that aims to make biological engineering easier than baking bread. Founded by five MIT scientists, the company offers to assemble biological parts--such as strings of specific genes--for industry and academic scientists.

Biological parts: Ginkgo BioWorks, a synthetic-biology startup, is automating the process of building biological machines. Shown here is a liquid-handling robot that can prepare hundreds of reactions.
Credit: Ginkgo BioWorks

"Think of it as rapid prototyping in biology--we make the part, test it, and then expand on it," says Reshma Shetty, one of the company's cofounders. "You can spend more time thinking about the design, rather than doing the grunt work of making DNA." A very simple project, such as assembling two pieces of DNA, might cost $100, with prices increasing from there.

Synthetic biology is the quest to systematically design and build novel organisms that perform useful functions, such as producing chemicals, using genetic-engineering tools. The field is often considered the next step beyond metabolic engineering because it aims to completely overhaul existing systems to create new functionality rather than improve an existing process with a number of genetic tweaks.

Scientists have so far created microbes that can produce drugs and biofuels, and interest among industrial chemical makers is growing. While companies already exist to synthesize pieces of DNA, Ginkgo assembles synthesized pieces of DNA to create functional genetic pathways. (Assembling specific genes into long pieces of DNA is much cheaper than synthesizing that long piece from scratch.)

Ginkgo will build on technology developed by Tom Knight, a research scientist at MIT and one of the company's cofounders, who started out his scientific career as an engineer. "I'm interested in transitioning biology from being sort of a craft, where every time you do something it's done slightly differently, often in ad hoc ways, to an engineering discipline with standardized methods of arranging information and standardized sets of parts that you can assemble to do things," says Knight.

Scientists generally create biological parts by stitching together genes with specific functions, using specialized enzymes to cut and sew the DNA. The finished part is then inserted into bacteria, where it can perform its designated task. Currently, this process is mostly done by a lab technician or graduate student; consequently, the process is slow, and the resulting construct isn't optimized for use in other projects. Knight developed a standardized way of putting together pieces of DNA, called the BioBricks standard, in which each piece of DNA is tagged on both sides with DNA connectors that allow pieces to be easily interchanged.

"If your part obeys those rules, we can use identical reactions every time to assemble those fragments into larger constructs," says Knight. "That allows us to standardize and automate the process of assembly. If we want to put 100 different versions of a system together, we can do that straightforwardly, whereas it would be a tedious job to do with manual techniques." The most complicated part that Ginkgo has built to date is a piece of DNA with 15 genes and a total of 30,000 DNA letters. The part was made for a private partner, and its function has not been divulged.

Assembling parts is only part of the challenge in building biological machines. Different genes can have unanticipated effects on each other, interfering with the ultimate function. "One of the things we'll be able to do is to assemble hundreds or thousands of versions of a specific pathway with slight variations," says Knight. Scientists can then determine which version works best.

So far, Knight says, the greatest interest has come from manufacturing companies making chemicals for cosmetics, perfumes, and flavorings. "Many of them are trying to replace a dirty chemical process with an environmentally friendly, biologically based process," he says.

Ginkgo is one of just a handful of synthetic-biology companies. Codon Devices, a well-funded startup that synthesized DNA, ceased operations earlier this year. "The challenge now is not to synthesize genes; there are a few companies that do that," says Shetty. "It's to build pathways that can make specific chemicals, such as fuels." And unlike Codon, Ginkgo is starting small. The company is funded by seed money and a $150,000 loan from Lifetech Boston, a program to attract biotech to Boston. Its lab space is populated with banks of PCR machines, which amplify DNA, and liquid-handling robots, mostly bought on eBay or from other biotech firms that have gone out of business. And the company already has a commercial product--a kit sold through New England Biolabs that allows scientists to put together parts on their own.

"If successful, they will be providing a very important service for synthetic biology," says Chris Voigt, a synthetic biologist at the University of California, San Francisco. "There isn't anybody else who would be characterizing and providing parts to the community. I think that this type of research needs to occur outside of the academic community--at either a company or a nonprofit institute."

Original article by Emily Singer for MIT Technology Review

May 13, 2009

In Attics and Closets, 'Biohackers' Discover Their Inner Frankenstein




Some researchers and law-enforcement officials have raised red flags about biohackers, and have called for better oversight of "synthetic DNA," an ingredient widely used by professional biologists and hobbyists, saying it could theoretically lead to the creation of harmful viruses like Ebola or smallpox.

Read original article here-->

Other articles about Biohackers include:

-"Biohackers attempt to Unstitch the Fabric of Life" from Times Online

-"Biohackers Push DIY Science in the Basement" from Newser

May 5, 2009

Lithium Water Curbs Suicide


BBC News, May 1, 2009

The suicide rate is significantly lower in areas in Japan with the highest levels of lithium water, scientists at the universities of Oita and Hiroshima have found.

Drinking water which contains the element lithium may reduce the risk of suicide, a Japanese study suggests.

Researchers examined levels of lithium in drinking water and suicide rates in the prefecture of Oita, which has a population of more than one million.

The suicide rate was significantly lower in those areas with the highest levels of the element, they wrote in the British Journal of Psychiatry.

High doses of lithium are already used to treat serious mood disorders.
But the team from the universities of Oita and Hiroshima found that even relatively low levels appeared to have a positive impact of suicide rates.

Levels ranged from 0.7 to 59 micrograms per litre. The researchers speculated that while these levels were low, there may be a cumulative protective effect on the brain from years of drinking this tap water.

Added element

At least one previous study has suggested an association between lithium in tap water and suicide. That research on data collected from the 1980s also found a significantly lower rate of suicide in areas with relatively high lithium levels.
Any suggestion that it should be added, even in tiny amounts, to drinking water should be treated with caution and researched very thoroughly
Sophie Corlett
Mind

The Japanese researchers called for further research in other countries but they stopped short of any suggestion that lithium be added to drinking water.

The discussion around adding fluoride to water to protect dental health has proved controversial - criticized by some as mass involuntary medication.

In an accompanying editorial, Professor Allan Young of Vancouver's Institute for Mental Health said "this intriguing data should provoke further research.

"Large-scale trials in creating lithium water may then be feasible, although this would undoubtedly be subject to considerable debate. Following up on these findings will not be straightforward or inexpensive, but the eventual benefits for community mental health may be considerable."
Sophie Corlett, external relations director at mental health charity Mind said the research "certainly merits more investigation.

"We already know that lithium can act as a powerful mood stabilizer for people with bipolar disorder, and treating people with lithium is also associated with lower suicide rates.

"However, lithium also has significant and an unpleasant side effects in higher doses, and can be toxic. Any suggestion that it should be added, even in tiny amounts, to drinking water should be treated with caution and researched very thoroughly."